On numerical optimization theory of infinite kernel learning

نویسندگان

  • Süreyya Özögür-Akyüz
  • Gerhard-Wilhelm Weber
چکیده

In Machine Learning algorithms, one of the crucial issues is the representation of the data. As the given data source become heterogeneous and the data are large-scale, multiple kernel methods help to classify “nonlinear data”. Nevertheless, the finite combinations of kernels are limited up to a finite choice. In order to overcome this discrepancy, a novel method of “infinite” kernel combinations is proposed in [12,16] with the help of infinite and semi-infinite programming regarding all elements in kernel space. Looking at all infinitesimally fine convex combinations of the kernels from the infinite kernel set, the margin is maximized subject to an infinite number of constraints with a compact index set and an additional (Riemann-Stieltjes) integral constraint due to the combinations. After a parametrization in the space of probability measures, it becomes semi-infinite. We adapt well-known numerical methods to our infinite kernel learning model and analyze the existence of solutions and convergence for the given algorithms. We implement our new algorithm called ”infinite” kernel learning (IKL) on heterogenous data sets by using exchange method and conceptual reduction method, which are well known numerical techniques from solve semi-infinite programming. The results show that our IKL approach improves the classifaction accuracy efficiently on heterogeneous data compared to classical one-kernel approaches. This study is partially done at Instiute of Applied Mathematics, Middle East Technical University, Ankara, Turkey and Faculty of Engineering and Natural Sciences, Sabancı University, Istanbul, Turkey S. Özöğür-Akyüz Department of Mathematics and Computer Science, Bahçeşehir University, Istanbul, Turkey Tel.: +90 212 381 0310 E-mail: [email protected] G.-W. Weber Institute of Applied Mathematics, Middle East Technical University, METU, Ankara, Turkey Faculty of Economics, Management Science and Law University of Siegen, Germany E-mail: [email protected]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Composite Kernel Optimization in Semi-Supervised Metric

Machine-learning solutions to classification, clustering and matching problems critically depend on the adopted metric, which in the past was selected heuristically. In the last decade, it has been demonstrated that an appropriate metric can be learnt from data, resulting in superior performance as compared with traditional metrics. This has recently stimulated a considerable interest in the to...

متن کامل

Modelling of Kernel Machines by Infinite and Semi-infinite Programming

In Machine Learning (ML) algorithms, one of the crucial issues is the representation of the data. As the data become heterogeneous and large-scale, single kernel methods become insufficient to classify nonlinear data. The finite combinations of kernels are limited up to a finite choice. In order to overcome this discrepancy, we propose a novel method of ”infinite” kernel combinations for learni...

متن کامل

Linearly constrained reconstruction of functions by kernels with applications to machine learning

This paper investigates the approximation of multivariate functions from data via linear combinations of translates of a positive definite kernel from a reproducing kernel Hilbert space. If standard interpolation conditions are relaxed by Chebyshev–type constraints, one can minimize the norm of the approximant in the Hilbert space under these constraints. By standard arguments of optimization t...

متن کامل

Learning with Infinitely Many Kernels via Semi-infinite Programming

In recent years, learning methods are desirable because of their reliability and efficiency in real-world problems. We propose a novel method to find infinitely many kernel combinations for learning problems with the help of infinite and semi-infinite optimization regarding all elements in kernel space. This will provide to study variations of combinations of kernels when considering heterogene...

متن کامل

A numerical approach for optimal control model of the convex semi-infinite programming

In this paper, convex semi-infinite programming is converted to an optimal control model of neural networks and the optimal control model is solved by iterative dynamic programming method. In final, numerical examples are provided for illustration of the purposed method.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Global Optimization

دوره 48  شماره 

صفحات  -

تاریخ انتشار 2010